Integrated process-system modelling and control through graph neural network and reinforcement learning

نویسندگان

چکیده

Modern manufacturing systems are becoming increasingly complex, dynamic, and connected, their performance is being affected by not only constituent processes but also system-level interactions. This paper presents an integrated modelling method based on a graph neural network (GNN) multi-agent reinforcement learning (MARL) collaborative control for adjusting individual machining process parameters in response to system- process-level conditions. The structural operational dependencies among machines captured with GNN. Iteratively trained MARL, learn adaptively local parameters, e.g., speed depth of cut, while achieving the global goal improving production yield.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

intentional and incidental vocabulary learning through listening comprehension

یکی از مسایل مهم در یادگیری زبان ، یادگیری لغت است. هدف این تحقیق ، بررسی یاد گیری شیوه های مستقیم و غیر مستقیم فراگیری لغت درفرایند شنیداری زبان است و اینکه کدامیک از آنها برای بهبود و تسهیل یادگیری واژگان زبان آموزان سطح متوسطه موثرترند.این تحقیق تفاوت بین تاثیر فراگیری مستقیم و غیر مستقیم لغت در فرایند شنیداری زبان در کوتاه مدت را بررسی می کند ، سپس تفاوت بین تاثیر یادگیری مستقیم و غیر مستقی...

15 صفحه اول

Efficient Reinforcement Learning Through Evolving Neural Network Topologies

Neuroevolution is currently the strongest method on the pole-balancing benchmark reinforcement learning tasks. Although earlier studies suggested that there was an advantage in evolving the network topology as well as connection weights, the leading neuroevolution systems evolve fixed networks. Whether evolving structure can improve performance is an open question. In this article, we introduce...

متن کامل

Reinforcement Learning through Neural Encoding

Recent progress in the field of Reinforcement Learning (RL) has enabled to tackle bigger and more challenging tasks. However, the increasing complexity of the problems, as well as the use of more sophisticated models such as Deep Neural Networks (DNN), has impeded the ability to understand the behavior of trained policies. In this work, we present the Semi-Aggregated Markov Decision Process (SA...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

A Neural Reinforcement Learning System

In this paper we present a reinforcement learning (RL) system based on neural circuits. The neural RL system is benchmarked against a Monte Carlo (MC) RL algorithm on two tasks. The first task is the classical n-armed bandit problem and the second task is path finding in a maze. The neural RL system performs equally well or better than the MC RL algorithm. The RL system presented is very flexib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: CIRP Annals

سال: 2021

ISSN: ['1660-2773', '0007-8506', '1726-0604']

DOI: https://doi.org/10.1016/j.cirp.2021.04.056